Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia.

نویسندگان

  • Sumudu Ranasinghe
  • Grace Or
  • Eric Y Wang
  • Aiva Ievins
  • Merritt A McLean
  • Cristopher M Niell
  • Vann Chau
  • Peter K H Wong
  • Hannah C Glass
  • Joseph Sullivan
  • Patrick S McQuillen
چکیده

UNLABELLED Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a "precritical period" of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic-ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia-ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neonatal cerebral hypoxia-ischemia impairs plasticity in rat visual cortex.

Ocular dominance plasticity (ODP) following monocular deprivation (MD) is a model of activity-dependent neural plasticity that is restricted to an early critical period regulated by maturation of inhibition. Unique developmental plasticity mechanisms may improve outcomes following early brain injury. Our objective was to determine the effects of neonatal cerebral hypoxia-ischemia (HI) on ODP. T...

متن کامل

بررسی اثر کروسین متعاقب ایجاد مدل صرعی با هیپوکسی بر حافظه احترازی و فعالیت حرکتی در موش صحرایی جوان

Background & Aims: Hypoxia is the most common cause of seizures in the neonatal period. Seizure induced by hypoxia cause permanent increases in excitability of neurons and by changing in activity and synaptic plasticity leads to memory impairment. Crocins (Crocus sativus L.) is a water-soluble carotenoid and is the most important active components of saffron. Most studies indicate that crocin h...

متن کامل

Ca2+/Calmodulin-Dependent Protein Kinase II Contributes to Hypoxic Ischemic Cell Death in Neonatal Hippocampal Slice Cultures

We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic pl...

متن کامل

The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury.

The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries wh...

متن کامل

NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia.

BACKGROUND AND PURPOSE The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 34  شماره 

صفحات  -

تاریخ انتشار 2015